Sains Malaysiana 53(7)(2024):
1589-1603
http://doi.org/10.17576/jsm-2024-5307-09
Physiological
and Yield Performance of Commercial Rice Varieties under Cyclic Water Stress in
Malaysia
(Fisiologi dan Prestasi Hasil Varieti Padi Komersial di bawah Tekanan Air Kitaran di Malaysia)
NURUL- IDAYU ZAKARIA1,
ZULKARAMI BERAHIM1, MUHAMMAD ASYRAF MD HATTA2, MOHAMAD
HUSNI OMAR1, RHUSHALSHAFIRA ROSLE2, MOHD RAZI ISMAIL3,*, NIK NORASMA CHE’YA2, ASYRAF AZMI2 & MOHAMMAD IQBAL HAKIM MOHD AZHAN2
1Laboratory of Climate- Smart Food
Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
2Department of Agriculture
Technology, Faculty of Agriculture, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Crop Science, Faculty
of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 5 Disember 2023/Diterima: 4 Jun 2024
Abstract
The production of drought-tolerant
rice varieties in Malaysia and the information regarding the response of local
varieties to water stress are still lacking. Therefore, this experiment was
conducted to determine the growth, physiological performance, molecular
response, and yield of ten available rice varieties, namely MR 219, MR 220-CL2,
MR 297, MRQ 76, Vietnam Hybrid, UKM RC2, UKM RC8, Putra 1, MR 303, and MR 307,
under ten days of cyclic water stress. The experiment was arranged in a
Randomized Complete Block Design (RCBD) with three replications. Plant height,
tiller number, photosynthesis rate, stomatal conductance, transpiration rate,
chlorophyll content, biomass partitioning, genotyping of SSR markers, days of
harvest, and yield component were measured. Results showed that water
limitations reduced tiller number per hill, while plant height, leaf dry
matter, and panicle length were enhanced. It was found that MR 297 had the
shortest plant height, while MR 220-CL2 had a short maturity period, a shorter
panicle length, and an enhanced filled grain percentage. Putra 1 and UKM RC8
showed a higher photosynthesis rate, stomatal conductance, and transpiration
rate under water limitation at 99 days after sowing (DAS). Under well-watered
conditions, the total grain weight per pot of Putra 1 and MR 307 was enhanced
compared to MR 219. Meanwhile, under water limitation, the total grain weight
per pot of UKM RC2, MR 220-CL2, MR 307, MR 297, and
Vietnam Hybrid was comparable to MR 219 and slightly enhanced in UKM RC8, Putra
1, and MR 303. Among the tested varieties, MR 220-CL2 can be selected based on
early maturity criteria for the potential development of drought-tolerant
varieties.
Keywords: Drought; Oryza sativa; photosynthesis rate; stomatal
conductance; yield component
Abstrak
Pengeluaran varieti padi tahan kemarau di Malaysia dan maklumat mengenai tindak balas varieti tempatan terhadap tekanan air masih kurang. Justeru, penyelidikan ini dijalankan untuk menentukan pertumbuhan, prestasi fisiologi, tindak balas molekul dan hasil sepuluh varieti padi yang ada, iaitu MR 219, MR 220-CL2, MR 297, MRQ 76, Vietnam Hybrid,
UKM RC2, UKM RC8, Putra 1, MR 303 dan MR 307 di bawah kitaran sepuluh hari tekanan air. Uji kaji telah disusun dalam Reka Bentuk Blok Lengkap Rawak (RCBD) dengan tiga ulangan. Ketinggian tanaman, kadar fotosintesis, kekonduksian stomata, kadar transpirasi, kandungan klorofil, pembahagian biojisim, genotaip penanda SSR, hari penuaian dan komponen hasil diukur. Keputusan menunjukkan bahawa air yang terhad mengurangkan bilangan anak setiap rumpun, manakala ketinggian tanaman, berat kering daun dan panjang tangkai bertambah baik. Didapati bahawa MR 297 mempunyai ketinggian terendah manakala MR 220-CL2 mempunyai tempoh matang yang pendek, panjang tangkai yang lebih pendek dan peratusan biji berisi yang dipertingkatkan.
Putra 1 dan UKM RC8 menunjukkan kadar fotosintesis, kekonduksian stomata dan kadar transpirasi adalah lebih tinggi di bawah tekanan air pada 99 hari selepas menyemai (DAS). Di bawah keadaan pengairan yang baik, jumlah berat bijirin setiap pot di dalam Putra 1 dan MR 307 telah dipertingkatkan berbanding MR 219. Sementara itu, di bawah tekanan air, jumlah berat bijirin setiap pot UKM RC2, MR
220-CL2, MR 307, MR 297 dan Vietnam Hibrid adalah setanding dengan MR 219 dan dipertingkatkan sedikit dalam UKM RC8, Putra 1 dan MR
303. Antara varieti yang diuji,
MR 220-CL2 boleh dipilih berdasarkan kriteria kematangan awal untuk potensi pembangunan varieti tahan kemarau.
Kata kunci:
Kadar fotosintesis; kekonduksian stomata; kemarau; komponen hasil; Oryza sativa
RUJUKAN
Aboulila,
A.A. 2015. Marker assisted selection for
genetic improvement of drought tolerance in hybrid rice (Oryza sativa L.). International
Journal of Biotechnology Research 3(3): 045-054.
Afiukwa,
C.A.A., Faluyi, J.O., Atkinson, C.J., Ubi, B.E.U., Igwe, D.O. & Akinwale, R.O. 2016. Screening of some rice varieties and
landraces cultivated in Nigeria for drought tolerance based on phenotypic
traits and their association with SSR polymorphisms. African Journal of Agricultural Research 11(29): 2599-2615. https://doi.org/10.5897/AJAR2016.11239
Asmuni, M.I., Ismail, A. & Abd Aziz, S.N. 2019. Morpho-physiological
responses of rice towards submergence tolerance. International Journal of Agriculture and Biology 22(1): 35-42. https://doi.org/10.17957/IJAB/15.1030
Barik,
S.R., Pandit, E., Mohanty,
S.P., Nayak, D.K. & Pradhan, S.K. 2020. Genetic
mapping of physiological traits associated with terminal stage drought
tolerance in rice. BMC Genetics 21(1): 1-12. https://doi.org/10.1186/s12863-020-00883-x
Bashier,
A., Masanga, J., Kariuki,
W. & Runo, S. 2018. Simple sequence repeat (SSR)
markers linked to drought tolerant traits in selected Sudanese rice (Oryza sativa L.) genotypes. African Journal of Biotechnology 17(20):
649-659. https://doi.org/10.5897/AJB2018.16466
Berahim, Z., Dorairaj, D., Saud, H.M.
& Ismail, M.R. 2019. Regulation of sucrose synthase and its association
with grain filling in spermine-treated rice plant
under water deficit. Journal of Plant
Interactions 14(1): 464-473. https://doi.org/10.1080/17429145.2019.1657189
Cabuslay, G.S., Ito, O. & Alejar,
A.A. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science 163(4): 815-827. https://doi.org/10.1016/S0168-9452(02)00217-0
Cheng,
F., Bin, S., Iqbal, A., He, L., Wei, S., Zheng, H., Yuan, P., Liang, H., Ali,
I., Xie, D., Yang, X., Xu, A., Ullah,
S. & Jiang, L. 2022. High sink capacity improves rice grain yield by
promoting nitrogen and dry matter accumulation. Agronomy 12: 1688. https://doi.org/10.3390/agronomy12071688
Darmadi, D., Junaedi,
A., Sopandie, D., Lubis, I.
& Homma, K. 2021. Water-efficient rice performances under drought stress
conditions. AIMS Agriculture and
Food 6(3): 838-864. https://doi.org/10.3934/agrfood.2021051
Department of
Agriculture (DOA). 2021. Crop Statistic Booklet (Food Crop Sub-sector).
Department of Agriculture. Putrajaya: Ministry of Agriculture and Food Industries Malaysia. pp: 21-22 (In Malay).
Dien, D.C., Mochizuki, T. & Yamakawa, T. 2019. Effect of various drought stresses and
subsequent recovery on proline, total soluble sugar
and starch metabolisms in rice (Oryza sativa L.)
varieties. Plant Production Science 22(4):
530-545. https://doi.org/10.1080/1343943X.2019.1647787
Dorairaj, D. & Govender,
N.T. 2023. Rice and paddy industry in Malaysia: Governance and policies,
research trends, technology adoption and resilience. Frontiers in Sustainable Food Systems 7:
1093605. https://doi.org/10.3389/fsufs.2023.1093605
Doyle, J. 1991. DNA protocols for
plants. In Molecular Techniques in
Taxonomy. NATO ASI Series, vol 57, edited by
Hewitt, G.M., Johnston, A.W.B. & Young, J.P.W. Berlin, Heidelberg:
Springer. pp. 283-293. https://doi.org/10.1007/978-3-642-83962-7_18
Elixon,
S., Asfaliza, R., Othman, O., Norsuha,
M.S., Maisarah, M.S., Allicia,
J. & Shahida, H. 2017. Evaluation on yield, yield
component and physico-chemicals of advanced rice
lines. Journal of Tropical Agriculture
and Food Science 45(2): 131-143.
FAOSTAT. 2021. Production
Data, FAO, accessed 28th December 2022. www.fao.org/faostat/en/#data
Farooq,
M., Wahid, A., Lee, D.J., Ito, O. & Siddique, K.H. 2009. Advances in
drought resistance of rice. Critical
Reviews in Plant Sciences 28(4): 199-217. https://doi.org/10.1080/07352680902952173
Freeg,
H.A., Anis, G.B., Abo-Shousha,
A.A., El-Banna, A.N. & El-Sabagh,
A. 2016. Genetic diversity among some rice genotypes with different drought
tolerance based on SSR Markers. Cercetari Agronomice in Moldova 49(3): 39-50. https://doi.org/10.1515/cerce-2016-0024
Hashim, M.F.C., Haidar,
A.N., Nurulhuda, K. & Melissa, F. 2022.
Physiological and yield responses of five rice varieties to nitrogen fertilizer
under farmer's field in IADA KETARA, Terengganu, Malaysia. Sains Malaysiana 51(2):
359-368. https://doi.org/10.17576/jsm-2022-5102-03
Kamarudin,
Z.S., Shamsudin, N.A.A., Othman, M.H.C., Shakri, T., Tan, L.W., Sukiran,
N.L., Isa, N.M., Rahman, Z.A. & Zainal, Z. 2020. Morpho-physiology
and antioxidant enzyme activities of transgenic rice plant overexpressing ABP57 under reproductive stage drought
condition. Agronomy 10(10):
1530. https://doi.org/10.3390/agronomy10101530
Kamoshita, A., Rodriguez, R., Yamauchi, A. &
Wade, L. 2004. Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Production Science 7(4):
406-420. https://doi.org/10.1626/pps.7.406
Khush, G.S. 1997. Origin, dispersal,
cultivation and variation of rice. Plant
Molecular Biology 35(1): 25-34. https://doi.org/10.1023/A:1005810616885
MADA. 2015. Rice Check. Muda Agriculture Development
Authority (MADA), Malaysia. p. 7.
MARDI. 2002. MR 219, A New High Yielding Rice Variety with Yields of More than 10
MT/ Ha. Serdang: MARDI.
Mehmood,
S., Ud Din, I., Ullah, I.,
Mohamed, H.I., Basit, A., Khan, M.N., Shah, S.S.H.
& ur Rehman, A. 2021.
Agro-morphological and genetic diversity studies in rice (Oryza sativa L.) germplasm using microsatellite markers. Molecular Biology Reports 48(11):
7179-7192. https://doi.org/10.1007/s11033-021-06710-5
Miah,
G., Rafii, M.Y., Ismail, M.R., Puteh,
A.B., Rahim, H.A. & Latif, M.A. 2015. Recurrent parent genome recovery
analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.). Comptes Rendus Biologies 338(2):
83-94. https://doi.org/10.1016/j.crvi.2014.11.003
Ministry of Agriculture and Food
Industries (MAFI). 2021. Executive
Summary National Agrofood Policy 2021-2030 (NAP 2.0) Agrofood Modernisation: Safeguarding the Future of National Food
Security. Putrajaya: Ministry of Agriculture and Food Industries Malaysia.
p. 4.
Ministry of Agriculture and Food
Industries (MAFI). 2019. Agrofood
Statistics 2019. Putrajaya: Ministry of Agriculture and Food Industries
Malaysia. p. 10.
Osakabe, Y., Osakabe,
K., Shinozaki, K. & Tran, L.S.P. 2014. Response of plants to water
stress. Frontiers in Plant Science 5:
86. https://doi.org/10.3389/fpls.2014.00086
Pan,
Y., Lu, Z., Lu, J., Li, X., Cong, R. & Ren, T. 2017. Effects of low sink
demand on leaf photosynthesis under potassium deficiency. Plant Physiology and Biochemistry 113:
110-121. https://doi.org/10.1016/j.plaphy.2017.01.027
Pantuwan, G., Fukai,
S., Cooper, M., Rajatasereekul, S. & O’toole, J.C. 2002. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant
genotypes. Field Crops Research 73(2-3):
169-180. https://doi.org/10.1016/S0378-4290(01)00195-2
Pathaichindachote,
W., Panyawut, N., Sikaewtung,
K., Patarapuwadol, S. & Muangprom,
A. 2019. Genetic diversity and allelic frequency of selected Thai and exotic
rice germplasm using SSR Markers. Rice
Science 26(6): 393-403. https://doi.org/10.1016/j.rsci.2018.11.002
Salunkhe,
A.S., Poornima, R., Prince, K.S.J., Kanagaraj, P., Sheeba, J.A., Amudha, K., Suji, K.K., Senthil, A. & Babu, R.C.
2011. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Molecular
Biotechnology 49(1): 90-95. https://doi.org/10.1007/s12033-011-9382-x
Shamsudin,
N.A.A., Swamy, B.P., Ratnam,
W., Cruz, S., Teressa, M., Raman, A. & Kumar, A.
2016. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian
rice cultivar, MR219. BMC Genetics 17(1): 1-14. https://doi.org/10.1186/s12863-016-0334-0
Shavrukov, Y., Kurishbayev,
A., Jatayev, S., Shvidchenko,
V., Zotova, L., Koekemoer,
F., De Groot, S., Soole, K. & Langridge, P. 2017.
Early flowering as a drought escape mechanism in plants: How can it aid wheat
production? Frontiers in Plant
Science 8: 1950. https://doi.org/10.3389/fpls.2017.01950
Sunian, E., Ramli, A., Jamal, M.S., Saidon, S.A. & Kamaruzaman,
R. 2022. Development of high yielding varieties for food sustainability
production. MARDI Technology Bulletin
Special Plant Breeding Colloquium 30: 83-97.
Susanto, U., Rohaeni,
W.R., Yunani, N. & Prastika,
D. 2019. Drought tolerant selection of rice genotypes using raised bed system.
In IOP Conference Series: Earth and
Environmental Science 250(1): 012049. IOP Publishing. https://doi.org/10.1088/1755-1315/250/1/012049
Susilowati,
M., Aswidinnoor, H., Enggarini,
W. & Trijatmiko, K.R. 2017. Identification of a
major quantitative trait locus for grain weight in rice using microsatellite
marker. Makara Journal of Science 21(4): 2. https://doi.org/10.7454/mss.v21i4.6590
Talei, D., Valdiani,
A., Maziah, M. & Mohsenkhah,
M. 2013. Germination response of MR 219 rice variety to different exposure
times and periods of 2450 MHz microwave frequency. The Scientific World Journal 2013. https://doi.org/10.1155/2013/408026
Tan, B.T., Fam, P.S., Firdaus,
R.R., Tan, M.L. & Gunaratne, M.S. 2021. Impact of
climate change on rice yield in Malaysia: A panel data analysis. Agriculture 11(6): 569. https://doi.org/10.3390/agriculture11060569
Tanweer, F.A., Rafii,
M.Y., Sijam, K., Rahim, H.A., Ahmed, F. & Latif,
M.A. 2015. Current advance methods for the identification of blast resistance
genes in rice. Comptes Rendus Biologies 338(5): 321-334. https://doi.org/10.1016/j.crvi.2015.03.001
Vaghefi, N., Shamsudin, M.N., Radam, A. & Rahim, K.A. 2016. Impact of climate change
on food security in Malaysia: Economic and policy adjustments for rice
industry. Journal of Integrative
Environmental Sciences 13(1): 19-35. https://doi.org/10.1080/1943815X.2015.1112292
Wu,
D.H., Chen, C.T., Yang, M.D., Wu, Y.C., Lin, C.Y., Lai, M.H. & Yang, C.Y.
2022. Controlling the lodging risk of rice based on a plant height dynamic
model. Botanical Studies 63(1):
1-12. https://doi.org/10.1186/s40529-022-00356-7
Xu, Y., Beachell,
H. & McCouch, S.R. 2004. A marker-based approach
to broadening the genetic base of rice in the USA. Crop Science 44(6): 1947-1959. https://doi.org/10.2135/cropsci2004.1947
Yang, J., Li, Y., Cao, H., Yao, H.,
Han, W. & Sun, S. 2019. Yield-maturity relationship of summer maize from
2003 to 2017 in the Huanghuaihai plain of China. Scientific Reports 9: 11417. https://doi.org/10.1038/s41598-019-47561-2
Yilmaz, C. & Gökmen,
V. 2016. Chlorophyll. In Encyclopedia of Food and Health, edited
by Caballero, B., Finglas, P.M. & Toldrá, F. Massachusetts: Academic Press. pp. 37-41.
Yoshida, S. 1981. Fundamentals of Rice Crop Science. Los Banos: IRRI. p. 269.
Zain, N.A.M., Ismail, M.R., Mahmood,
M., Puteh, A. & Ibrahim, M.H. 2014. Alleviation
of water stress effects on MR220 rice by application of periodical water stress
and potassium fertilization. Molecules 19(2):
1795-1819. https://doi.org/10.3390/molecules19021795
Zhao,
W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F. & Wu, J. 2020. Effects
of water stress on photosynthesis, yield, and water use efficiency in winter
wheat. Water 12(8): 2127. https://doi.org/10.3390/w12082127
Zulkafli, Z., Muharam, F.M., Raffar,
N., Jajarmizadeh, A., Abdi, M.J., Rehan,
B.M. & Nurulhuda, K. 2021. Contrasting influences
of seasonal and intra-seasonal hydroclimatic variabilities on the irrigated rice paddies of Northern Peninsular Malaysia for
weather index insurance design. Sustainability 13(9): 5207. https://doi.org/10.3390/su13095207
*Pengarang untuk surat-menyurat; email: razi@upm.edu.my
|